主管:教育部
主办:中国人民大学
ISSN 0257-2826  CN 11-1454/G4

Teaching and Research ›› 2021, Vol. 55 ›› Issue (8): 68-76.

Previous Articles     Next Articles

The Data Factor's Dual Attribute and Its Interaction Effects

  

  1. 1School of Marxism, Yangzhou University, Yangzhou, Jiangsu 225009, China;
    2 Business School, Yangzhou University, Yangzhou, Jiangsu 225009, Chin
  • Online:2021-08-16 Published:2021-07-28

数据要素的双重属性及其交互效应

  

  1. 1  扬州大学马克思主义学院;  2  扬州大学商学院、江苏城乡融合发展研究中心。  
  • 作者简介:管星淼,扬州大学马克思主义学院博士研究生;秦兴方,扬州大学商学院教授、江苏城乡融合发展研究中心主任(江苏 扬州 225009)。
  • 基金资助:

    本文系国家社科基金重点项目“城乡一体化嵌入县域经济发展动力结构的制度创新研究”(项目号:17AJL009)的阶段性成果。

     

Abstract: Data has become a factor of production. This occurs when history enters the era of big data, in which technologies such as artificial intelligence, cloud computing, and blockchain are used to collect, mine and process data. Data is a special product of labor, a derivative of other production factors. The data factor has a dual attribute: being physical or technical, and meanwhile being social. The social dimension of the data factor can not only materialize the technical dimension but also amplify it, ie. it has the multiplication effect on the allocation efficiency of other production factors. The social dimension is brought out via the medium of the technical dimension. Viewed purely from a technical perspective, this medium is strongly adhesive; after being bonded with other factors of production, it will only lead to physical reaction and not change the nature of other factors. However, once the two dimensions interact with each other, especially when combined with capital, the most adhesive factor in the market economy, a series of new social relations will then be produced based on this medium. Significant adjustments in social relations may ensue, involving both positive and negative externalities. Therefore, to get a scientific understanding of the dual attribute and its interaction effects of the data factor, it is necessary to take the following steps. One the one hand, we should promote institutional designs that amplify positive externalities, with a focus on facilitating public data sharing and improving commercial data development. On the other hand, we need to strengthen institutional arrangements that prevent and control negative externalities by emphasizing data supervision based on data types and levels as well as the rule of law.

Key words: data factor, special product of labor, technical, social, interaction effects

摘要: 本文认为,数据成为生产要素是历史发展到大数据时代,从而可以利用人工智能、云计算、区块链等技术对海量数据进行采集、加工、挖掘和处理的产物,是一种具有再派生性质的特殊劳动产品。数据要素既具有自然属性或技术性,又具有社会属性或社会性,其中,数据要素的技术性都要借助社会性得以实现并对技术性产生放大效应,即对其他生产要素配置效率的倍增效应;数据要素的社会性又以技术性为介质而催生,纯粹从技术性角度看,这一介质具有极强的被黏合性且在被黏合后只会产生物理反应,即不会改变其他生产要素的性质。但是,一旦技术性与社会性相互作用,尤其是与市场经济下最具有黏合力的资本要素相结合,则依托这一介质将会催生出一系列新型社会关系,引起社会关系的巨大调整,包括正外部性和负外部性。因此,科学认识数据要素的双重属性及其交互效应,必须以促进公共数据共享和提升商业数据开发利用价值为重点推进放大正外部性的制度设计,以强化数据要素分类分级监管和数据法治为重点推进防控负外部性的制度安排。

关键词: 数据要素, 特殊劳动产品, 技术性, 社会性, 交互效应